# SPM32 Multifunction Power Meter Installation & Operation Manual V1.0



ZHUHAI PILOT TECHNOLOGY CO., LTD.



## Danger and warning!

This device can be installed only by professionals.

The manufacturer shall not be held responsible for any accident caused by the failure to comply with the instructions in this manual.



#### Risks of electric shocks, burning, or explosion

- This device can be installed and maintained only by qualified people.
- Before operating the device, isolate the voltage input and power supply and short-circuit the secondary windings of all current transformers.
- Put all mechanical parts, doors, or covers in their original positions before energizing the device.
- Always supply the device with the correct working voltage during its operation.

Failure to take these preventive measures could cause damage to equipment or injuries to people

## **CONTENTS**

| 1. General Information                    | 4  |
|-------------------------------------------|----|
| 2. Order Information                      | 5  |
| 3. Dimension and Installation             | 6  |
| 3.1 Dimension                             | 6  |
| 3.2 Installation                          | 6  |
| 4. Display and Keys-press Operation       | 7  |
| 4.1 Display instruction                   | 7  |
| 4.2 Keys                                  | 7  |
| 4.3 Real-time data display procedure      | 8  |
| 4.4 Setting menu and procedure            | 9  |
| 5. Measuring Capability                   | 11 |
| 5.1 Real-time basic electrical parameters | 11 |
| 5.1.1 Voltage                             | 11 |
| 5.1.2 Current                             | 12 |
| 5.1.3 Frequency                           | 12 |
| 5.1.4 Power                               | 13 |

| 5.2 Demand value                                                                                                                                                                                                                                                                                                                                                                                                 | 13 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5.3 Energy (kWh, kvarh)                                                                                                                                                                                                                                                                                                                                                                                          | 14 |
| 5.4 Harmonic parameters                                                                                                                                                                                                                                                                                                                                                                                          | 14 |
| 5.5 Unbalance parameters                                                                                                                                                                                                                                                                                                                                                                                         | 15 |
| 5.6 Alarm setpoint                                                                                                                                                                                                                                                                                                                                                                                               | 16 |
| 5.6.1The alarm object and type                                                                                                                                                                                                                                                                                                                                                                                   | 16 |
| 5.6.2 Setpoint delay time                                                                                                                                                                                                                                                                                                                                                                                        | 17 |
| 5.6.3 Alarm output                                                                                                                                                                                                                                                                                                                                                                                               | 18 |
| 5.6.4 Example                                                                                                                                                                                                                                                                                                                                                                                                    | 18 |
| 6. Input/output Characteristics                                                                                                                                                                                                                                                                                                                                                                                  | 19 |
| 6.1 Relay output                                                                                                                                                                                                                                                                                                                                                                                                 | 19 |
| 6.2 Digital input                                                                                                                                                                                                                                                                                                                                                                                                | 20 |
| 5.4 Harmonic parameters  5.5 Unbalance parameters  5.6 Alarm setpoint  5.6.1The alarm object and type  5.6.2 Setpoint delay time  5.6.3 Alarm output  5.6.4 Example  6. Input/output Characteristics  6.1 Relay output  6.2 Digital input.  7. Technical Specification  8. Communication protocol  9. Maintenance and Trouble Shooting  10. Terminals Definition                                                 | 21 |
| 5.3 Energy (kWh, kvarh)  5.4 Harmonic parameters  5.5 Unbalance parameters  5.6 Alarm setpoint  5.6.1The alarm object and type  5.6.2 Setpoint delay time  5.6.3 Alarm output  5.6.4 Example  6. Input/output Characteristics  6.1 Relay output  6.2 Digital input  7. Technical Specification  8. Communication protocol  9. Maintenance and Trouble Shooting  10. Terminals Definition  11. Typical Connection | 23 |
| 5.5 Unbalance parameters  5.6 Alarm setpoint  5.6.1The alarm object and type  5.6.2 Setpoint delay time  5.6.3 Alarm output  5.6.4 Example  6. Input/output Characteristics  6.1 Relay output  6.2 Digital input  7. Technical Specification  8. Communication protocol  9. Maintenance and Trouble Shooting  10. Terminals Definition                                                                           | 24 |
| 10. Terminals Definition                                                                                                                                                                                                                                                                                                                                                                                         | 27 |
| 11. Typical Connection                                                                                                                                                                                                                                                                                                                                                                                           | 29 |

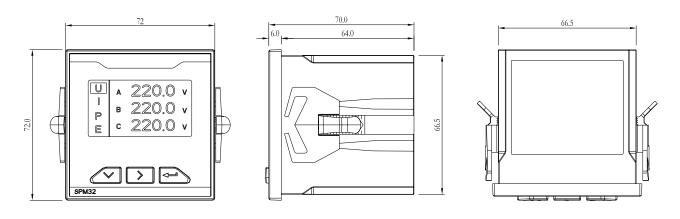
#### 1. General Information

SPM32 Three Phase Multifunction Power Meter is designed for monitoring and displaying all kinds of electricity parameters in high/ low voltage system to 650kV. It has one RS485 port and support Modbus-RTU communication protocol.

SPM32 provide the main function as below:

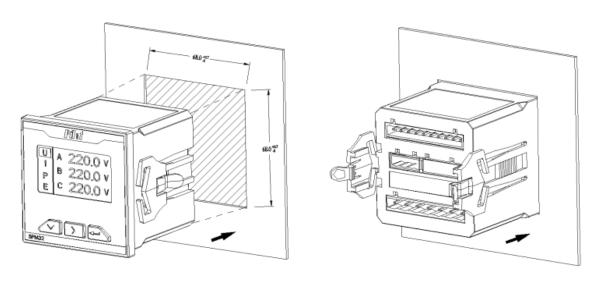
- Real-time measuring data, true RMS
   (Three phase voltage, current, active power, reactive power, apparent power, power factor, frequency, active energy, reactive energy)
- Demand calculation
   (Demand and peak demand for current, total active power)
- Optional 2 digital input
- Optional 2 relay output
- Alarm function
- 2~31th individual harmonic and THD
- One RS485, Modbus-RTU protocol

## 2. Order Information


| SPM32 - □ - □        |                                 |  |  |
|----------------------|---------------------------------|--|--|
| ①: Optional function |                                 |  |  |
| R                    | Two relay output                |  |  |
| S                    | Two status input                |  |  |
| ②: F                 | ②: Rated input voltage/ current |  |  |
| V1                   | 5A                              |  |  |
| V2                   | 1A                              |  |  |

Example: SPM32-SR-V1, it means the device provides basic measuring function, one RS485 port, 2 digital input, 2 relay output. Rated input current 5A.

## 3. Dimension and Installation


#### 3.1 Dimension

unit: mm

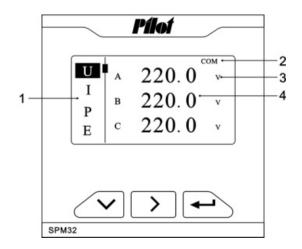


#### 3.2 Installation

unit: mm



## 4. Display and Keys-press Operation


#### 4.1 Display instruction

1: Main menu, the black flashing is the current menu.

2: Prompt of communication .

3: Unit of parameter.

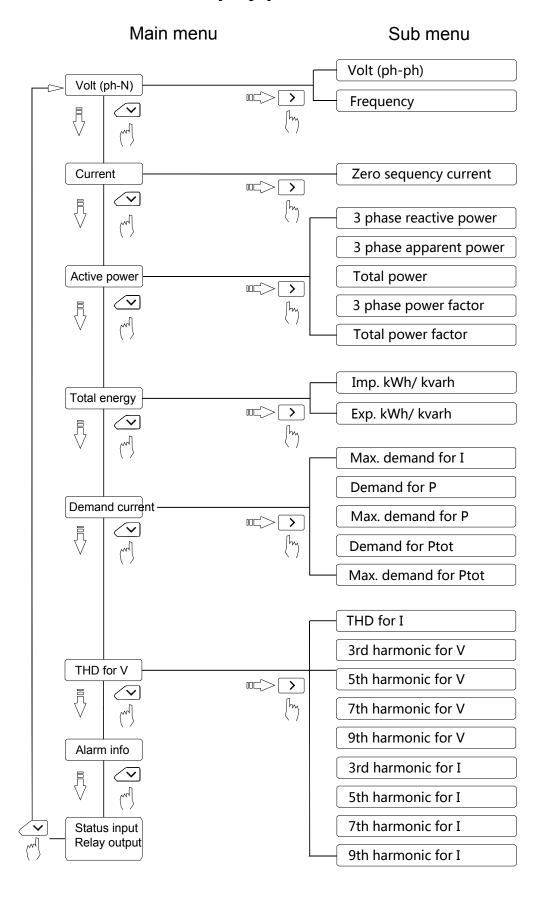
4: Data display area.



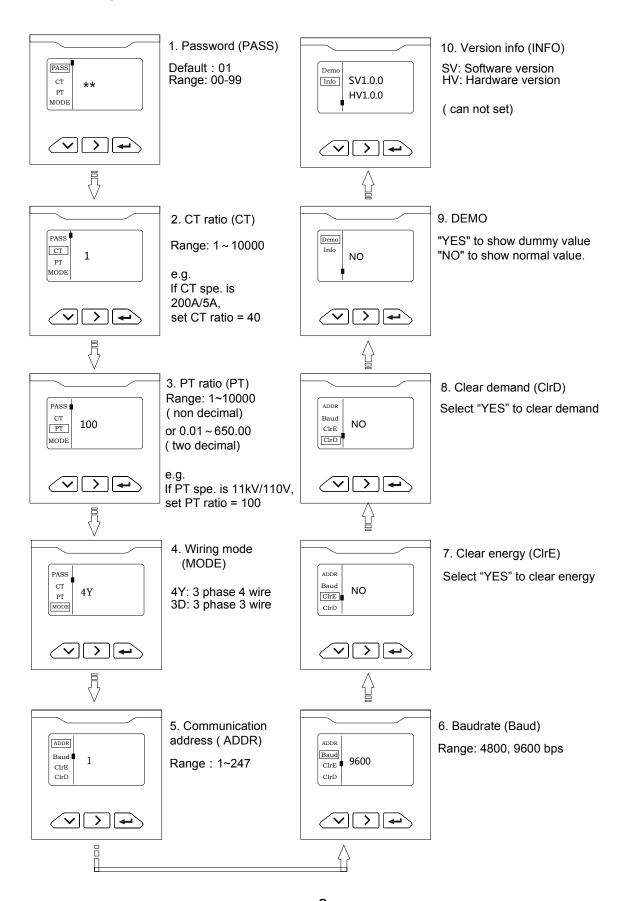
#### Description:

(1) If there is no key operation within 60s, the backlight automatically turns off, when the backlight is lit until the button operation again.

#### **4.2 Keys**


Note: In a different interface, the same keys have different functions.

Sibling menu switch / decrease the value


Switching sibling menu to submenu / move the cursor to right

Confirm/ Exit

## 4.3 Real-time data display procedure



#### 4.4 Setting menu and procedure



#### Remark

- 1. Input super password "99", the device will display the original password.
- 2. In 3-phase 3-wire mode, the device displays total power only (total P, total Q, total PF). Per phase power value will be 0.
- 3. The optional relay function only can be set via Modbus communication
- 4. In case the programmed data is invalid, the setting is not successful. The device restores the original parameters.
- 5. There is no description in this manual for other customized function.

## 5. Measuring Capability

#### 5.1 Real-time basic electrical parameters

SPM32 measures basic parameters: voltage, current, power, and frequency etc.

| Real-time metering                          | Measuring range     |  |
|---------------------------------------------|---------------------|--|
| Current                                     |                     |  |
| Single phase                                | 0 ~ 65,000A         |  |
| Zero sequence                               | 0 ~ 65,000A         |  |
| Unbalance (%)                               | 0 ~ 100%            |  |
| Voltage                                     |                     |  |
| Line-line                                   | 0 ~ 650kV           |  |
| Line-neutral                                | 0 ~ 650kV           |  |
| Active power/Reactive power /Apparent power |                     |  |
| Single phase                                | 0 ~ ± 9999MW/var/VA |  |
| Total                                       | 0 ~ ± 9999MW/var/VA |  |
| Power factor                                |                     |  |
| Single phase                                | -1.000 ~ +1.000     |  |
| Total                                       | -1.000 ~ +1.000     |  |
| Frequency                                   |                     |  |
| 35 ~ 65Hz                                   | 35 ~ 65Hz           |  |

## 5.1.1 Voltage

SPM32 maximum measurement for phase voltage is 400V (PT secondary). In 3-phase 3-wire system, maximum measurement for line voltage is 500V (PT secondary). Users should be noted this to prevent internal measuring circuit saturation, avoid inaccurate measurements.

The device support 3-phase 3-wire and 3-phase 4 mode. Users can set the

Wiring Mode by keys or communication.

Note: After change the wiring mode, users must clear energy value to 0

5.1.2 Current

SPM32 must be connected by CT to measure current. CT secondary rated

output required to meet the input requirements of SPM32 rated current (5A or

1A). When using an external CT, wiring should prevent open, otherwise it will

generate a higher voltage in the secondary role. In the primary excitation effect,

causing no casualties or damage to equipment.

Measuring range:  $0 \sim 6.5 \,\text{A}$  (CT secondary).

CT ratio setting range: 1~10000

Users should be noted above range to prevent internal measuring circuit

saturation, avoid inaccurate measurements.

5.1.3 Frequency

In different wiring mode, the device measures the frequency from different

channel.

In 3-phase 3-wire, it measures frequency signal from Line 1-2

In 3-phase 4-wire, it measure frequency signal from Line 1 voltage input. In

case Line 1 voltage loss, it measures from Line 3 voltage input. In case both

Line 1 & 3 loss, it measures from Line 2 voltage input.

12

#### **5.1.4 Power**

SPM32 calculates per phase and total active power/ reactive power/ apparent power/ power factor.

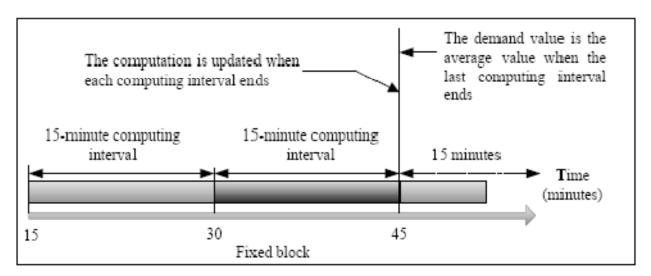
Power measuring range: 0 ~ ± 9999MW/var/VA (per phase & total)

Power factor measuring range: -1.000 ~ +1.000 (per phase & total)

#### Note

- 1. The active power/ reactive power/ power factor is signed value
- 2. When wiring, users should pay attention to the phase sequence of voltage and current. Otherwise, it may cause wrong measuring data. Besides, it is necessary to connect the CTs terminals correctly; otherwise there will be negative power value.

#### 5.2 Demand value


Demand value is accumulated value during a specified period divided by the length of that period. SPM32 adopts Fix Block to calculate the demand. Fix interval is 15 minutes.

SPM32 provides the following demand data and measuring ranges:

| Demand reading    | Measuring range |
|-------------------|-----------------|
| Demand current    |                 |
| Per phase current | 0 ~ 65,000A     |
| Max. peak demand  | 0 ~ 65,000A     |

| Demand active power             |              |
|---------------------------------|--------------|
| Per phase power                 | 0 ~ ± 9999MW |
| Total power                     | 0 ~ ± 9999MW |
| Max. peak of per phase          | 0 ~ ± 9999MW |
| Max. peak demand of total power | 0 ~ ± 9999MW |

The figure below describes demand calculation:



#### 5.3 Energy (kWh, kvarh)

SPM32 accumulates energy parameters: imp. kWh, exp. kWh, imp. kvarh, exp. kvarh and kVAh. If the value reaches to maximum ( 99,999,999.9 kWh), it will automatically turn over, and re-start accumulate from 0.

Note: the kVAh value only can be read via Modbus communication.

#### **5.4 Harmonic parameters**

SPM32 measures voltage and current harmonic up to 31<sup>st</sup>, and calculates THD,

The data of harmonics are given according to the percentage of fundamental

harmonics and have one digit after the decimal point. That is to say, when the value of the fundamental harmonic is fixed at 1000, it is 100.0% of the effective value of the fundamental harmonic; others are by analogy.

THD refers to the total of higher harmonics except fundamental harmonics, and it is calculated according to the following formula:

$$THD = \sqrt{\sum_{i=2}^{i=n} X_i^2}$$

i: Harmonic order.

 $oldsymbol{X}_i$  : Percentage of the effective value of each harmonic to that of the fundamental harmonic.

 ${\it \Pi}$  : Highest harmonic order, which should be 31 here.

#### **Note**

SPM32 LCD display 3<sup>rd</sup>/ 5<sup>th</sup> / 7<sup>th</sup> / 9<sup>th</sup> harmonic and THD, other order harmonic can be read via Modbus communication.

#### 5.5 Unbalance parameters

SPM32 can measure current unbalance, the unbalance is calculated:

 $Xunbal = (Xmax - Xmin)/Xmax \times 100\%$ 

Xunbal — The unbalance of the voltage or current

Xmax — Maximum value of the three-phase voltage or current

Xmin — Minimum value of the three-phase voltage or current

## 5.6 Alarm setpoint

SPM32 with user definable valued system which can monitor the electrical parameters of the instrument and set the action.

## 5.6.1The alarm object and type

| Object             | Alarm triggered                              | remark           |
|--------------------|----------------------------------------------|------------------|
| The upper limit of | Max. primary voltage > Upper limit           | Setting value to |
| voltage            | In 3P4W, the value is voltage ph-N           | 0 means unable   |
|                    | In 3P3W, the values is voltage ph-ph         | alarm.           |
|                    | (Setting range: 20.00V~650,000.00V)          |                  |
| The lower limit of | Min. primary voltage < Lower limit           | Setting value to |
| voltage            | In 3P4W, the value is voltage ph-N           | 0 means unable   |
|                    | In 3P3W, the values is voltage ph-ph         | alarm.           |
|                    | (Setting range: 20.00V~650,000.00V)          | alarrii.         |
|                    |                                              |                  |
|                    | If Secondary voltage <10V, the device        |                  |
|                    | will think it is phase loss alarm. It is not |                  |
|                    | alarm for under voltage.                     |                  |
| The upper limit of | Max. primary current > Upper limit           | Setting value to |
| current            |                                              | 0 means unable   |
| The lower limit of | Min. primary current (≠0) < Lower limit      | alarm.           |
| current            |                                              |                  |
| The upper limit of | Metering frequency >Upper limit              | Setting value to |

| frequency          |                                         | 0 means unable   |
|--------------------|-----------------------------------------|------------------|
| The lower limit of | Metering frequency (≠0) < Lower limit   | alarm.           |
| frequency          |                                         |                  |
| The upper limit of | Total active power (primary) > Upper    | Setting value to |
| power              | limit                                   | 0 means unable   |
|                    |                                         | alarm.           |
| Voltage phase      | Any one phase or 2 phase voltage        | Select ON/OFF    |
| loss               | (secondary) <10V                        |                  |
|                    |                                         |                  |
| DI 1 switch off    | Digital input 1 channel switch position | Select ON/OFF    |
|                    | OFF                                     |                  |
| The upper limit of | Demand Ptot (primary) > Upper limit     | Setting value to |
| demand power       |                                         | 0 means unable   |
|                    |                                         | alarm.           |

#### 5.6.2 Setpoint delay time

Alarm condition: When the monitoring object exceeds the limitation, the delay duration time also is required to active the alarm. Throughout the delay time, if the object is within the return limits, then the alarm setpoint is not activated.

The unit of delay time is seconds (s), setting range:  $0\sim120$  (s).

If the delay time is 0, it means that once the monitoring object exceeds the limit, the alarm setpoint generated immediately.

#### 5.6.3 Alarm output

When the alarm occurs, the alarms type can also be read from LCD or via Modbus communication. If the alarm associated relays, the relay generates action. Once the alarm disappears, the ALARM light will be off, the relay will be reset.

#### 5.6.4 Example

If user want to monitor over current and over voltage, suppose: voltage exceeds 240V, delay time is 80s, or current exceeds 200A, delay time is 10s, then the relay 1 alarm The setting as below:

| Parameter           | Setting value |
|---------------------|---------------|
| Voltage upper limit | 240V          |
| Voltage delay time  | 80s           |
| Current upper limit | 200A          |
| Current delay time  | 10s           |
| Relay 1 mode        | Alarm         |
| Relay 1 object      | All           |

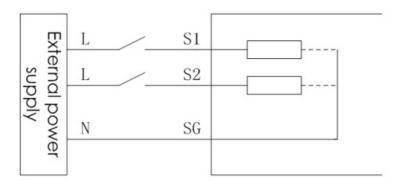
#### 6. Input/output Characteristics

#### 6.1 Relay output

SPM32 provides optional two relay output, relay specification is 250Vac/5A. It can be used with the instrument's alarm setpoint system, to monitor relative electrical parameters whether there is exceed limit, and thus output breaker reasonable action ( Please refer to the chapter of the alarm setpoint for more details).

Or, the relay can be set to remote control mode. Users can remote control the relay according to project requirement.

SPM32 provides two relay operation modes. The action of relay is different in these two modes. The default control mode of this product is remote control. Users can modify to alarm control through panel relay setting or through communication.


- Remote control (external) The relay is controlled by a PC or PLC by using commands through communication.
- Alarm Control (internal) If there is an alarm generated, the relay on the action, you can refer to specific alarm setpoint alarm.
- When setting as Alarm mode, Alarm Subject including All, Voltage, Current,
   Frequency, Total active power, Voltage Phase lose, or DI 1 off, Demand
   power etc

Once the relay has been in the remote control mode, even if the alarms generated, it will not act, the relay mode must be set to alarm mode, then can operate the alarm action.

Reset (effective only under remote mode): When receive a command from PC or PLC, the relay will act. The relay will keep on the position until to reset time. When reset time is 0, it means no reset.

#### 6.2 Digital input

SPM32 provides 2-way nodes configurable input, applied to monitoring circuit breaker position signal, switch position signals and other status information. SPM32 provides active status node, which need an external power source (176V~300V). The following 2-way status input as example to introduce this wiring mode.



In general, when the external node is closed on, SPM32 LCD corresponding status input channel is ON (●), internal set to 1.

When the external node is turned off, SPM32 LCD corresponding status input channel is OFF ( $\circ$ ), internal set to 0.

# 7. Technical Specification

| Aux. power supply     | AC 85~265V                                  |  |
|-----------------------|---------------------------------------------|--|
|                       | DC 100~300V                                 |  |
| Rated input current   | 5A or 1A                                    |  |
| Rated input voltage   | 57V ~300V(ph-N), 35Hz~65Hz                  |  |
|                       | Rated voltage 220V, 2 channel active status |  |
| Ctatus innut          | input.                                      |  |
| Status input          | Lower than 60V is open, higher than 178V is |  |
|                       | closed. Max. input is 300V.                 |  |
|                       | Rated contact capacity:                     |  |
| Relay output          | AC 250V/5A or DC 30V/5A                     |  |
| Power Consumption     | ≤ 2W/4VA                                    |  |
|                       | Operating temperature: -10°C ~ +55°C        |  |
|                       | Limit operating temperature: -25℃ ~ +55℃    |  |
| Operating environment | Storage temperature: -40°C ~ +70°C          |  |
|                       | Humidity: 5% ~ 95% RH, non-condensing       |  |
| Power frequency       |                                             |  |
| withstand voltage     | 2KVAC                                       |  |
| Insulation resistance | ≥ 100MΩ                                     |  |
| Impulse voltage       | 6KV                                         |  |
| IP index              | Front panel: IP52, case: IP20               |  |
| Certificate           | CE, Standard IEC61010-1: 2010               |  |
|                       |                                             |  |

| Parameter                                                | Range                                              | Accuracy                            |
|----------------------------------------------------------|----------------------------------------------------|-------------------------------------|
| voltage                                                  | 10V~500V                                           | 0.2%                                |
| current                                                  | 5%~120% of rating                                  | 0.2%                                |
| Power factor                                             | -1.000~1.000                                       | 0.5%                                |
| Active energy                                            | 0~9999999999                                       | 1.0% or 0.5%                        |
| Reactive energy                                          | 0~9999999999999999999999999999999999999            | 2.0%                                |
| Active power                                             | Per phase: 0 ~ ± 26MW  Total: 0 ~ ± 78MW           | 0.5%                                |
| Reactive power Apparent power                            | Per phase: 0 ~ ± 26Mvar/VA  Total: 0 ~ ± 78Mvar/VA | 1.0%                                |
| Unbalance                                                | 0%~100%                                            | 1.0%                                |
| Harmonic                                                 | 0%~100%                                            | Class B                             |
|                                                          | Standard                                           |                                     |
| Electrostatic Discharge Immunity Test                    | IEC61000-4-2:2001<br>(GB/T17626.2-2006)            | Level 4                             |
| Radiated immunity test                                   | IEC61000-4-3:2002<br>(GB/T17626.3-2006)            | Level 4                             |
| Electrical fast<br>transient/burst<br>immunity test      | IEC61000-4-4:2006<br>(GB/T17626.4-2008)            | Level 4                             |
| Surge immunity test                                      | IEC61000-4-5:2005<br>(GB/T17626.5-2008)            | Level 4                             |
| RF field immunity induced mass                           | IEC61000-4-6:2006<br>(GB/T17626.6-2008)            | Level 3                             |
| Radiated emissions limit                                 | CISPR22: 2006<br>(GB 9254-2008)                    | Pass                                |
| Voltage dips,<br>short<br>interruptions<br>immunity test | IEC61000-4-11:2004<br>(GB/T17626.11-2008)          | Pass                                |
| Power frequency withstand voltage                        | GB/T 17215.211-2006                                | Rated insulation voltage≤300V , The |

| test voltage 2000V。<br>Rated insulation<br>voltage≤60V , The |  |
|--------------------------------------------------------------|--|
| test voltage 1000V。<br>Leakage current<br>≦10mA。             |  |

# 8. Communication protocol

(Please refer to SPM32 Modbus Communication Protocol & Register List)

# 9. Maintenance and Trouble Shooting

| Possible problem                            | Possible cause         | Possible solution                 |  |
|---------------------------------------------|------------------------|-----------------------------------|--|
|                                             |                        | Check if the correct working      |  |
| There is no                                 |                        | voltage has been imposed on the   |  |
| display on                                  | The power supply fails | L/+ and N/- terminals of the      |  |
| device after                                | to be imposed on the   | meter.                            |  |
| impose power                                | meter.                 | Check if the fuse for the control |  |
| supply.                                     |                        | power supply has been burnt       |  |
|                                             |                        | down.                             |  |
|                                             |                        | Check if the neutral point has    |  |
|                                             |                        | been connected reliably.          |  |
|                                             | The voltage            | Check if the measured voltage     |  |
| The measured                                | measurement is not     | matches the rated parameter of    |  |
| value is not correct or does not conform to | correct.               | the meter.                        |  |
| the expectation.                            |                        | Check if the PT ratio has been    |  |
|                                             |                        | set correctly.                    |  |
|                                             | The current            | Check if the measured current     |  |
|                                             | measurement is not     | matches the rated parameter of    |  |

|                   | correct.                | the meter.                        |
|-------------------|-------------------------|-----------------------------------|
|                   |                         | Check if the CT ratio has been    |
|                   |                         | set correctly.                    |
|                   |                         | Check if the measurement mode     |
|                   |                         | has been set correctly.           |
|                   | The power               | Check if the phase sequence       |
|                   | measurement is not      | corresponding to the voltage and  |
|                   | correct.                | the current is correct.           |
|                   |                         | Check if the current terminals of |
|                   |                         | the same name are wrong.          |
|                   |                         | Check if the types of external    |
| The digital input | The voltage relating to | nodes match the rated             |
| status no         | digital input is not    | parameters of the meter.          |
| changing.         | correct.                | Check if the external connection  |
|                   |                         | is correct.                       |
| The relay         | The relay does not      |                                   |
| output status no  | receive the control     | Check if the communication link   |
| changing.         | command.                | is correct.                       |

|                           | The control mode of    | Check if the current relay is   |  |  |
|---------------------------|------------------------|---------------------------------|--|--|
|                           |                        | ·                               |  |  |
|                           | relay is not correct.  | under the correct mode.         |  |  |
|                           | The communication      | Check if the communication      |  |  |
|                           | baud rate of the meter | baud rate of the meter is       |  |  |
|                           | is not correct.        | consistent with its definition. |  |  |
|                           | The communication      |                                 |  |  |
|                           | link has not been      | Check if the 120-Ohm resistor   |  |  |
|                           | connected to the       | has been connected.             |  |  |
| There is no communication | terminal resistor.     |                                 |  |  |
| between the upper end     | The communication      | Check if the                    |  |  |
| device and the meter      | link suffers           | communication-shielding layer   |  |  |
|                           | interference.          | has been earthed effectively.   |  |  |
|                           | The communication      | Check if the communication      |  |  |
|                           | line is interrupted.   | cable has been disconnected.    |  |  |
|                           | The communication      | Check if the communication      |  |  |
|                           | baud rate of the meter | baud rate of the meter is       |  |  |
|                           | is not correct.        | consistent with its definition. |  |  |

## 10. Terminals Definition

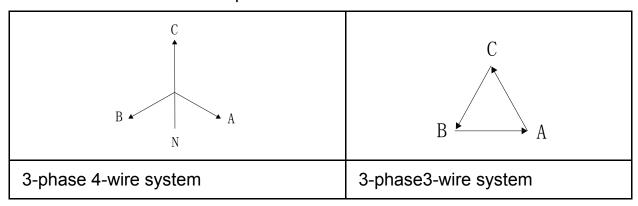
## Terminals of basic unit

| No. | Def. | Instruction                   | No. | Def. | Instruction                   |
|-----|------|-------------------------------|-----|------|-------------------------------|
| 1   | I3-  | Phase C current outgoing line | 2   | I3+  | Phase C current incoming line |
| 3   | I2-  | Phase B current outgoing line | 4   | I2+  | Phase B current incoming line |
| 5   | I1-  | Phase A current outgoing line | 6   | I1+  | Phase A current incoming line |
| 7   | NC   | Null                          | 8   | SHLD | RS485 shield                  |
| 9   | 485- | RS485 negative pole           | 10  | 485+ | RS485 positive pole           |
| 11  | NC   | Null                          | 12  | V1   | Phase A voltage               |
| 13  | V2   | Phase B voltage               | 14  | V3   | Phase C voltage               |
| 15  | VN   | Neutral line                  | 16  | N/-  | Negative pole of power supply |
| 17  | L/+  | Positive pole of power supply |     |      |                               |

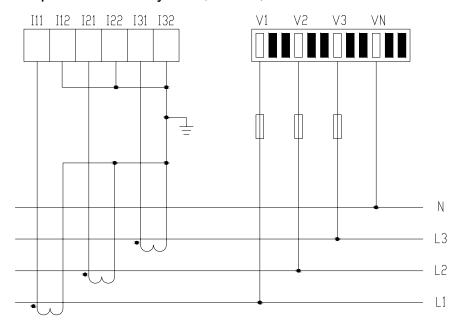
**Terminals of 2DI+2DO module (Optional)** 

| No. | Def. | Instruction         | No. | Def. | Instruction      |
|-----|------|---------------------|-----|------|------------------|
| 18  | RL1  | Relay 1 output 1    | 19  | RLN1 | Relay 1 Output 2 |
| 20  | RL2  | Relay 2 output 1    | 21  | RLN2 | Relay 2 Output 2 |
| 22  | NC   | Null                | 23  | NC   | Null             |
| 24  | S2   | Status input 2      | 25  | S1   | Status input 1   |
| 26  | SG   | Status input public |     |      |                  |
|     |      | GND                 |     |      |                  |

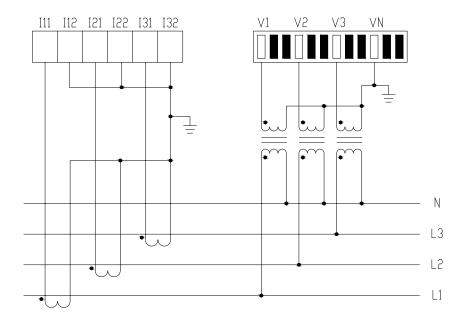
**Terminals of 2DO module (Optional)** 


| No. | Def. | Instruction      | No. | Def. | Instruction      |
|-----|------|------------------|-----|------|------------------|
| 18  | RL1  | Relay 1 output 1 | 19  | RLN1 | Relay 1 Output 2 |
| 20  | RL2  | Relay 2 output 1 | 21  | RLN2 | Relay 2 Output 2 |

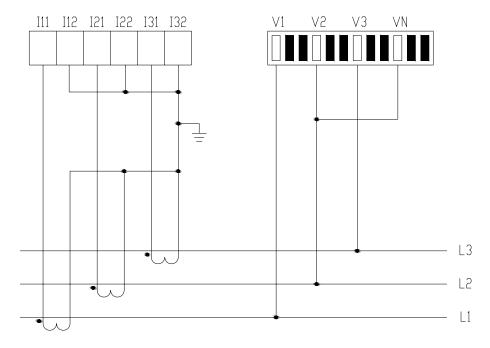
**Terminals of 2DI module (Optional)** 


| No. | Def.         | Instruction         | No. | Def. | Instruction    |
|-----|--------------|---------------------|-----|------|----------------|
| 18  | NC           | Null                | 19  | NC   | Null           |
| 20  | S2           | Status input 2      | 21  | S1   | Status input 1 |
| 22  | <b>22</b> SG | Status input public |     |      |                |
|     |              | GND                 |     |      |                |

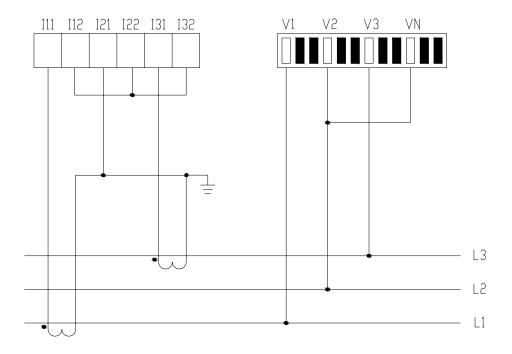
## 11. Typical Connection


SPM32 supports multiple connection modes of measurement, the following methods were used icons explained.

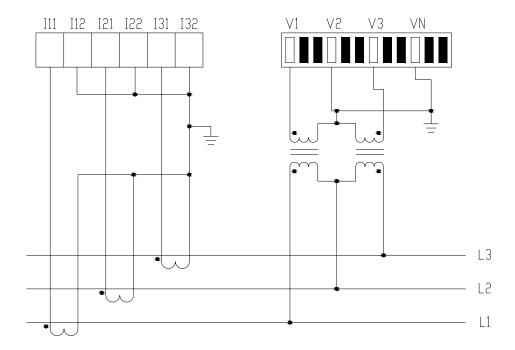



■ 3-phase 4-wire system, no PT, 3CT

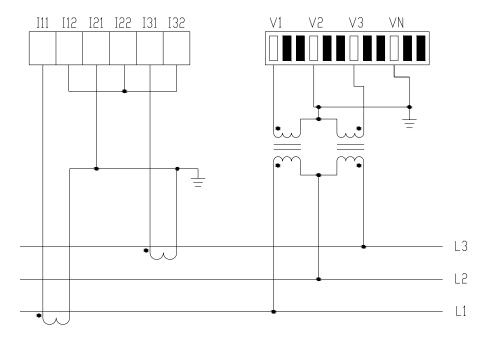



## ■ 3-phase 4-wire system, 3PT, 3CT

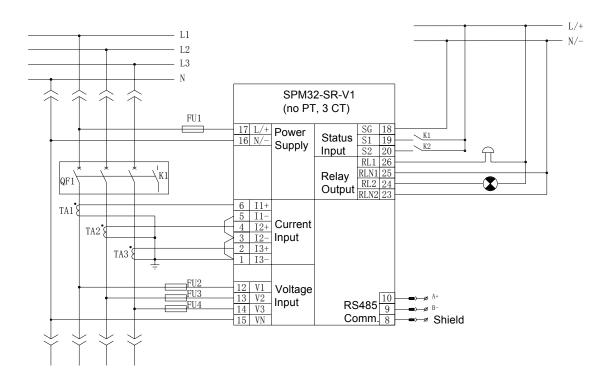



## ■ 3-phase 3-wire system, no PT, 3CT

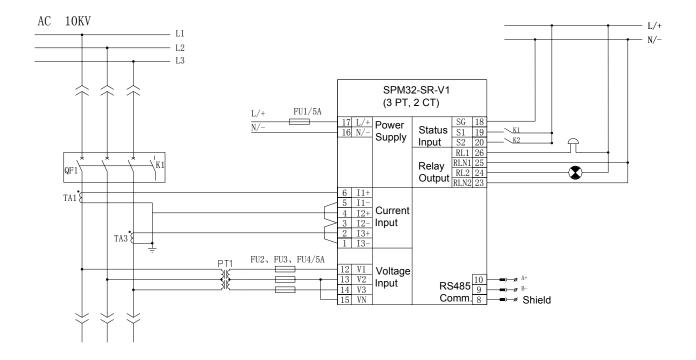



■ 3-phase 3-wire system, no PT, 2CT




## ■ 3-phase 3-wire system, 2PT, 3CT




#### ■ 3-phase 3-wire system, 2PT, 2CT



#### ■ Typical wiring: 3-phase 4-wire system



## ■ Typical wiring: 3-phase 3-wire system



#### **Notice:**

PILOT reserves the right to modify this manual without prior notice in view of continued improvement

# **Pilot** Zhuhai Pilot Technology Co., Ltd.

Add:No.15,keji6Road,Chuangxin Haian,Tangjia High-tech

Zone, Zhuhai, Guangdong, 519085 China

Tel: +86-756-3629687/3629688

Fax: +86-756-3629600/3629670

http://www.pmac.com.cn